
O STANFORD ARTIFICIAL INTELLIGENCE PROJECT APRIL, 1970
?w0 Aim-114

0ON THE SYNTHESIS OF FINITE-STATE ACCEPTORS

by

A. W. Biermann and J. A. Feldman

Computer Science Department

Stanford University

ABSTRACT: Two algorithms are presented for solving the following
problem: Given a finite-set S of strings of symbols,
find a finite-state machine which will accept the strings
of S and possibly some additional strings which
"resemble" those of S . The approach used is to
directly construct the states and transitions of the
acceptor machine from the string information. The
algorithms include a parameter which enable one to
increase the exactness of the resulting machine's
behavior as much as desired by increasing the number of
states in the machine. The properties of the algorithms
are presented and illustrated with a number of examples.

The paper gives a method for identifying a finite-state
language from a randomly chosen finite subset of the
language if the subset is large enough and if a bound
is known on the number of states required to recognize
the language. Finally, we discuss some of the uses of the
algorithms and their relationship to the problem of
granmatical inference.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield. Vi-4 -ta 22151.
Price: Full size copy $3.00; microfiche copy $ 0.(0 5 (

tR.Produced by the

Co L E AR I N G HQ 0K U 5 EH L.LWlor Federal Scientific & Technical' ' ' ' -l l

InformationUUI Sp fmil,n~fied Va 2151.-

Table of Contents

1. Introduction

2. A Finite-State Acceptor 2

3. Further Properties of A(S,k) * . 6

4. Applications 19

5. Another Finite-State Acceptor 22

6. Discussion and Sumnary. 25

Appendix o . . o . o . . o 26

Bibliography 31

ON THE SYNTHESIS OF FINITE-STATE ACCEPTORS

by

A. W. Biermann and J. A. Feldman

1. Introduction

An acceptor ic a finite-state machine which receives strings of

symbols as input and which responds to each string with an answer of

either "yes" or "no"; that is, it accepts or rejects each string. This

paper discusses the problem of constructing an acceptor for a particular

finite set S of strings and perhaps some edditional strings which

"resemble" those in S . We present two algorithms for constructing

such a machine frcm S and frcm additional information about the

required preciseness of the machine's behavior. The algorithms

presented enable one to obtain varying degrees of accuracy with

corresponding varying degrees of machine cmnplexity. Thus, if the

acceptor is required to accept only the strings of S and no others,

it can be expected to require many more states tha'i if a large number of

"extra" strings ere allowed to be in the accepted set.

There are a number of finite-state machine synthesis algorithms in

the literature. Huffman [9], Mealy [10] and others have developed

algorithms for sequential machine design when some kind of transition

table or state diagram is given. Ott and Feinstein [11], Brzozowski [i],

and others hp.ve given methods for constructing acceptors from their

jo

regular expressions. This paper is concerned with the problem of

designing a finite-state acceptor when no simple transition table,

state diagram, or regular expression is a-ailable.

Ginsburg [5, 6] gives an algorithm for synthesizing sequential

machines from input-output behavior, a problem similar to the one

dealt with here. However, our algorithms are concerned with the desig.

of a different type of device, an acceptor, and the methods presented

are distinctly different from those of (5, 6].

The techniques which are described here grew out of an idea by

Feldman [2] who was attempting to inter finite-state grammars for sets

of strings. Feldman's idea suggested a method of creating states and

transitions from string information, and this concept became the core

of the algorithms which were subsequently developed.

In this paper we will show how to construct a machine A(S,k)

which is an acceptor of set S (Section 2). Other properties of

A(S,k) will be investigated with examples given (Section 3), and its

applications will be discussed (Section 4). Finally, a second algorithm

and its properties will be investigated (Section 5).

2. A Finite-State Accetor

We introduce a number of definitions largely following the notation

of Ginsburg [6].

Definition 2.1. A nondetenministic automaton A is a five-tuple

QE, f, Qo, J> where

2

Q is a finite nonempty set (of states)

E is a ffinite nonempty set (of input symbols)

f is a mapping Q x Z - 2q (the transition function)

Qo is a subset of Q (the set of initial states)

F is a subset cf Q (the set of final states)

* 2

The function f is extended to a mapping Q x L 0- by the

recursive definition

f(qA) - [q)

where A is the string of length zero and qcQ , and

f (C wa) f(q',a)
q',Ef(q,w)

where weE and adE

Definition 2.2. The language L(A) of the nondeterministic

automaton A will be defined to be the set of strings w = a 1 a2 ... a ,

ai E for 1 < i < j , such that there is a iequence of states

qo, ql,....,qj with the properties

0 E"CO

(2) ql i f(qi,lai) for .< i < j

(5) qjcF.

We will be interested in the relation of the languages of various

automata to a fixed set S of strings. If S c L(A) , then A will

be said to accept S . If S = L(A) , then A will be said to accPt

exactly S

After a preliminary definition, we will show how to construct a

class of automata which will be shown to accept S

Definition 2.3. The k-tail of z with resect to S C Z will

be denoted as g(z,S,k) and will be defined as follows: Let z4E

.
be such that zwc S for some wcE , and let k be a nonnegative

integer. Then g(z,S,k) is defined as the set of strings wcE

with the properties

(a) zwcS

(b) length(w) < k

g(z,S,k) is undefined if z and k are outside of the domains

specified.

The acceptor of set S will be determined from the set S and

from the look-ahead level k and will be denoted A(Sk) .

?efinition 2.L. If S is a finite set of strings from Z , let

A(S,k) be the nonleteiinistic automaton

P'S k) = <tzfQo F>

where

Q = (qa2z lg(z,Sk) = q for some zcZ*

E = a finite nonempty set of input symbols

f(q,a) = (q'cQl there is a zcE such that g(z,S,k) = q

and g(za, S,k) = q')

Q0 (g(A,)Sk))

F = (qcQjAcq •

'4

The machine A(S, k) thus has as states the set of alU k-tails

whi~ch can be constructed from S . A transition from k-tail, S 1 to

k-tail S 2 under input symbol b will occur if there is a string z

with k-tail, S 1and zb has k-tail S2

The set S will be said to yield the language L(A(S.,k))

(at look-ahead level k).

Example 2.1. Suppose as an. illustration of Definition 2.4 that

we consider the example where S [ajabj~bb] and k =1 *Then

A(Spk) = ,~,,>where

E a,b)

Q0= ((a))

F = [(AI.,(A~b))

initial state: >

final state: ()

5

Note that the resulting machine which is diagramed in Figure 1 recognizes

the set ab . A(S,k) is typically not in minimal form as is lthe case

here, but minimization can always be done by well known algorithms

[4, 5, 6, 8]. If k had been set at 2 or larger, we would obtain

L(A(S,k)) = S .

Theorem 2.1. S c L(A(S,k)) for all nonnegative k

Proof. If w = ala2...aj c S , aicE then let qo= g(A,S,k)

and qi = g(ala2...ai'S'k) for i = 1,2,3,...,j . The sequence of

states qoq 1,ql , ...,q satisfy the three properties of Definition 2.2

ri we have wcL(A(S,k)) . This completes the proof.

The construction of Definition 2.4 has provided states to

account for all possible k-continuations of heads of strings in S

so A(S,k) will surely be able to accept S . The next section

is concerned with stronger requirements on A(S, k) and the

consequences of varying the look-ahead lcrel k .

3. Further Proerties of A(Sk) ki

The machine A(S,k) will have no more than 2i =O states if S

is from an alphabet Z of m distinct symbols so that the upper bound

on a machine's size can be adjusted by settig the value of k . Thus

we can expect A(S,k) to increase greatly in "computing power" as k

is made larger. For example, if L(A(Sk)) is considered to be an

bf

approximation to S , we can expect the approximation to be much Ut[°ter

if k is larger and, in fact, S = L(A(S,k)) if k. is as large as the

length of the longest string in S as will be &own below. From

another point of view, we can consider L(A(S,k)) to be a guess of the

language L0 from which the sample S has been chosen. If k is

very small, the "guess" of L0 will constitute a very liberal inference

and may include most of the strings from the alphabet of S . If k

is as large as the longest string in S , however, the inference will

be very conservative and will. in fact., include only the strings of S.

All of this will be made precise in the pl-aagraphs that follow.

The first property to confirm is that L(A(S,k)) = S if k is

large enough, and the proof will make use of the following obvious

Le~na.

Lemma 3.1. Let h(z,S) = w z-*l zwcS] . Then if k is greater

than or equal to the length of the longest string in S , g(z,S,k) = h(z,S)

for all zEfl such that g(zSpk) is defined.

Theorem 3.1. L(A(S,k)) = S if k is greater than or equal to

the length of the longest string in S

Proof. Employing the Lemma and the definition of A(Sk) , we

have A(Sk) = qF27 Lq = h(zS)),&,fQ o = fh(A,S)],F=fqEQjAh(z,S)}>

where f(q,a) = {q'EQ there is zEZ* such that q =h(z,S) and i' =h(za,S))

or f(h(3,S),a) = fh(ZL,S)) if h(za,S) is not empty. It follows that

!4

f((z's),,) = (zv ,S)) for all WEE if h(zwS) is not empt'. 'Men

f(h(AS),w) = fhts)). But h(A,S) is the Initial state so v will

be accepted by A(Sk) If and only if h(vS) is a ;inal state. That

Is true if and only if Ah(wS) which holds if and only if wc$

We cogclude that wEL'A(S,k)) if and only if wsS whicn ccmpletes

the proof.

-T.qe lover hound given on k is in general the best bomd which

can be obtained as -an be seen by applying the construction of Definition

2.4 to tl'e set 8 = fAs,- aY..,a] . It may also be worth mentioning

that the machine of 7heoret 3.1 will be deter.inistic and in its minimal

form.

We will next investigate the largugez L(A(S,k)) as k is

varied and note their relationship to each other. It turns out that

L(A(S,k)) "covers" L(A',,kti)) in the sense of Reynolds [12] for
I

nonnegative i . In fact, the next theorem could be derived from

Reynold'z results.

Theorem 3.2. L(A(S,k4l)) c_ L(A(S,k))

Proof. Assume w = aa 2 ... a, (L(A(S,k+l)) , a.,Z for I < I <j

Then there is a sequence of states qo, in A(S,k+i) with

the properties

(1) (q) = Q0

(2) qi+l C f(qi .ai+,) for 0 < i < J-i

and

e*

(3) qjeF (i.e., Aeqj)"

Furthermore, there is a string z cE such that z wiES for somei i
wicZ where qi = g(ziyS,'k+l) and q = g(ziai+,Sk+l) for each

i = Ol,2, ...,j-l . Next consider A(S,k) and the sequence of states

q6,ql,...,qj where q1 = q -(all strings in qi of length k1l].

These states certainly exist in A(S,k) and have properties analogous

to (1), (2), and (3) above. To justify (2), for example sL.ply employ

the ziIs defined above and observe that q1 = g(zi,S,k) and

q+1 = g(ziaS,k) will occur so that q+l wi(' f(,ai+l) for

0 < i < J-I . Therefore wEL(A(S,k)) and the proof is complete.

The last three theorems ccomine to give a good picture of how S

is related to L(A(S,k)) as k is varied, and Figure 2 illustrates

the situation. Each language L(A(Sk)) will include S and will be

included by L(A(S,k1.-l) . k is thus a parameter of the algorithm

which can be used to adjust L(A(S,k)) to be as close tj S as desired

ax the cost of increasing the number of states in the acceptor.

f There exists some m < length of longest string in S

such that L(A(S,i)) = S if I >m

Figure 2. The relationships between the languages I,(A(S,k))

as k is varied.

10

Suppose that the set of strings S is chosen from some finite-state

language L0 . It is desired to know what relationship the language

L(A(S,k)) may have to L and under what conditions one can expect,

for example, equality between the languages. Some information can be

obtained by turning the problem around and asking the following question:

If we are given finite-state language L0 , how do we construct a finite

set S and how do we set k in order to obtain L(A(S,k)) = Lo ? The

answer is to consider the minimal deterministic automaton M which will

accept exactly L0 and to construct S in such a way that A(S,k)

will be equivalent to M • If M has n states then we set the

look-ahead level k to equal n-2 since the states of M can be

characterized by their behavior n-2 steps into the future. This

analysis will now be formally carried out.

Definition 3.1. A finite-state deterministic automaton M is a

five-tuple <?,Z,dp 0,D> where

P is a finite nonempty set (of states)

E is a finite nonempty set (of input symbols)

d is a mapping Px E - P (the transition function)

pocP (the initial state)

D is a subset of P (the set of final states).

The function d is extended to a mapping P x -* P as the

function f was above.

U

I.

Definition 3.2. The language L(M) of the deterministic

automaton M will be defined as

L(M) = (wed* d(poW)eD)

Definition 3. 3.

(1) A state p1 In a machine M will be called f-reachable

if there is a string v of length f or less such that d(.o0 ,W) = Pi

(2) The states of machine M will be called k-distinguishable

if for each pair of distinct states pi and p in M there is a

string w with length (w) < k such that exactly one of the states

d(piw) or d(pjpw) is in D

(3) Consider the set C, of machines M whose states are

all 1-reachable and k-distinguishable. Then Z(L,k) will be defined

as follows:

Z(k) = LoLo = L(M) and ME] .I

Definition 3.4. The symbol M will henceforth be used to

designate the minimal deterministic machine such that L(M) = L

where L0 is the language we are considering at the moment.

Definition 3.5. if w Z then WOwii =,2...,qJ3

woWi I i = ., 2p3,..., iJ .

Theorem 3.3. If Lo EZ(L,k) then Lo= L(A(S,k)) if S is

constructed as follows:

12

(1) Choose strings zl, z 2 ,...,z such that for every state p

in M (where L(M) = LO) there is a z uivi such that d(po,ui) =p

(2) s V u -g(u,L0o,kl+c%)

ue such that

zi =uv for sane z i

where

= 1 if g(ua, Lo, k) and g(ua, L0 ,) # q for ae

a = 0 otherwise.

4 designates the empty set.

Proof. An informal justification will be included here, and a

more detailed proof will appear in the Appendix.

S is constructed so that each state p in M has a counterpart

in A(S,k) , namely the k-tail g(uLok) where d(pou) = p

Furthermore, each successor to p , specifically p' = d(pa) (aeE)

must have a counterpart g(ua, L0 ,k) in A(S,k) which is a successor

(under a) to g(u, L0 ,k) . To guarantee that A(Sk) will contain

g(u,Lok) and all of its successors, the set u .g(uLo,k+l) is

included in S • The set of u's is defined so that every state p in

M will have a counterpart in A(Sk) along with correctly assigned

successors. (For the moment, we ignore the quantity au .)

The fact that A(Sk) will accept L0 is clear because its

construction has insured its ability to simulate M . However, many

13

other states and transitions may appear in A(S,k) so one might think

A(S,k) would accept strings which are not in L0 . This will not

occur because the only other states which will appear in A(S,k) will

have the form g(u,L 0 ,k-i) with 0 < i < k . The transitions will be

such that A(Sk) will be in state g(uLok-i) only when A(S,k)

is also in state g(u, 1 ,k) . (Remember that A(S,k) is nondeterministic.)

Therefore no strings will be accepted by A(S,k) which are not also

accepted by M

The term au arises in the case where one of the successors

g(u&,Lo,k) to a state g(u, Lok) is the empty set q . Then A(S,k)

may not include the transition f(g(uI,,k),a) = g(ua,L0 ,k) because

g(ua,Lo,k) m'ay not have been created as a successor to g(uLo, k)

This problem is remedied by including u g(u, Lo, k+Il+a u) in S where

a = 1 . The reader is referred to the appendix for a detailed proof

of the theorem.

Definition 3.6. A set S c L0 which is constructed as described

by Theorem 3.3 will be called special (for language L at level k).

Example 3.1. As ai example, consider the automaton of Figure 3

which accep.s all of the strings on a three letter alphabet which have

exactly one A

14

A, B, C

Fig 3. E lampe 3.1.

Only one string zI = AA is necessary to satisfy (1) of Theorem 3.3.

Letting u = A, u' = A , u" =AAand k=lweobtain

S = u . g(u, Lo, k+l) U u• g(u',LO, k+1) U u" g(u",Lo, k+l)

= [A,ABACBACA] U [ABBABCACBACC) U (I • This results in the

machine A(Sl) which accepts exactly the desired language.

Theorem 3.3 is important because it indicates about how much

information must be obtained from L0 before it can be recognized by

the algorithm. For most problems, Theorem 3.3 will, with appropriately

chosen zi , give the S with the smallest possible number of strings

such that S will yield LO . It is true that there are sets S

which yield LO and which are not special, but they are generally

larger. A more precise characterization of the sets which yield LO

is possible, but it is too camplex to be included here.

It will also be noted but not proved that if S is special for LO

and S c S' C LO , then L0 = L(A(Sk)) C L(A(S',k)) . The inclusion

of a special set in S' insures that states and transitions will appear

15

in L(A(S',k)) which will accept all of the strings in L. • The)

additional strings in S' may add states and transitions to L(A(S',k))

which cause it to accept strings which are not in ". Thus a

randomly chosen subset of L0 which contains a special set will yield

a language which contains LO

Two useful corollaries follow from Theorem 3.2.

Definition 3.3. Sli =weS length (w) < i]

Corollary 3.1. If Lo E Z(I,k) then L(A(LO i, k)) if

i > I+k+l+a where a = 1 if the state q 3 is in A(L0 1i 1lk)

and c = 0 otherwise.

Proof. Choose the strings zl, z2, .. ,z m in (1) of Theorem 5.3

to be all the strings in L which have length i-k-l-a . Then S

as defined in (2) will be exactly L0Ii .

3.2. If L0 = L(M) where M is an n-state automaton,

then L0 = L(A(L0Ii,n-2)) if i > 2n -2+a where a = 1 if the state

q = (3 is in A(Lolil,n-2) and a = 0 otherwise.

Proof. Note that t7.e language fov any n-state automaton is in

Z(n-l,n-2) and employ the previous corollary.

16

The lower bound on i in Corollary 3.2 if o 0 is the best

performance that could be hoped for under any conditions. That is,

there exist distinct n-state languages which are identical for all

strings of length 2n-3 or less so that no algorithm could be expected

to discover L with only that much information. The two n-state

machines of Figure 4 provide an example.

2\ 2

a1 n-2 n-2
ababb

1 n11 n-i

a, a)b

n n

Al A2

Figure 4. L(AI)12n 3 L(A2)1I2n 3 but L(AI) A L(A 2)

Example 3.2. This section will be concluded with an example which

illustrates the various results given above. All of the strings of length

five or less for a particular finite state language L0 in Z(2,2) are

input to the algorithm while look-ahead level is varied. The set of

strings S satisfies the requirements of Theorem 3.3 so that L0 = L(A(S,2))

The resulting machines are shown in Figure 3. The reader may check that

the various assertions made aove do indeed hold.

17

k A(S..k) L(A(S,k))

k 0 'O (A+B) *BBI
A~ [A(A+B*B+B+)I+B)B)

A m]

A, B

B

B

BB

k 3 1 3(BAA+BAB+BB BBAB+AAAB)

A A A

Figure 5. Eample 3J,. BfBBAABBBBABBBBABBBABAAAAJB)

SV

18

4. Applications

The results of the previous sections are applicable to a variety

of problems in the synthesis of automata. The non-deterministic

automata created by these methods can, of course, be converted to

minimal deterministic automata by standard techniques [4, 5, 6, 8].

We will sketch briefly algorithms for some synthesis problems.

Suppose one is given two disjoint finite sets SI and S2 and

asked to construct a machine which accepts S1 and not S2 * The

required machine is the one of minimum k where ;cS2 implies

yjL(A(SI,k)) . This construction also solves the problsm of

constructing a machine given both strings and non-strings of its

language.

If one is given a bound n on the number of states of a finite

state machine and all of the strings of its language LO are available,

the minimal machine for LO can be found. One uses k = n-2 and

S = o and computes A(Sk) as described above. By Corollary 3.2,

L(A(Sk)) = L0 ; the minimized version of A(S,k) is the minimal machine

for the language LO .

One can also solve the problem of finding the minimum machine for

distinguishing the disjoint infinite finite-state languages LI and L2

when given bounds nl,n2 on the sizes of their respective machines.

The construction of the paragraph above gives minimal machines MI,

for I and L2 respectively. The smaller of these machines is an

upper bound on the size of the desired machine.

19

The most important use of our algorithms occurs in the sequential

learning situation. Suppose one is given a nw sring Yid% at time ti

and asked to select a machine Ai which describes the sequeace up to

time t * This is the analog of the ramatical inference proolem 12, 31

which was our original motivation and is a model of scientific reasoning

and other hypothesis forming behaviour. The interesting questions Li

sequential learning are the nature of the machines Ai and the limiting

behaviour of an algorithm as i - - . We have developed elsewhere [31

a number of general results on this subject. These show that there is

an algorithm which will choose the best A, at each i and will be such

that the successive Ai becoac ever better approximations to the machine

of L

There are two important advantages of the methods of this paper

over the general algorithms described in (3]. The latter methods depend

on enumerating all finite-state machines in order, while the construction

of Section 2 requires one to consider only a small number of machines.

In addition, for fixed k , the machine A(S!,k) is easily constructed

from the machine A(S i-,k) . This notion of sequential modification of

a synthesized machine is extremely important and will be bric¢;y described.

Suppose that A(Si.1,k) has been constructed and that A(Si, k) must

now be found; Si = Si 1 U [yi• Let yi ala2a3 ."ar a. a

Then only the k+l (or fewer) states g(aaa 2...ar, ,k) ,
-aa r-k- Si-l k

g(ala2a3 ...ark+lSik) , .. , g(ala2 ...ar,Si1 ,k) in A(Si 1l,k) are

affected by the addition of the string y i * Each of the sets

g(Yl2 a 3..a rlj,Si_.,k) must have the string ar-k+j+lar-k+j+2* .ar

20

added to it, and the transition function f must be correspondingly
changed. These alterations in A(S. ,k) are enough to produce the

new machine A(Si, k) . Considering the Example 2.1, if the string abba

is added to S , the new acceptor can be constructed by altering the

sttes g(abb,S,l) and g(abba,S,l) . g(abb,S,l)= (A] becomes fA,a],

g(abba, S,1) which was not defined in the original construction becomes [A)

and A(S U (abba],l) now accepts exactly the set ab* + ab ba .

We have shown that the construction of Definition 2.4 will produce

machines A(Si, k) which have desirable properties. It remains to

describe an algoritlm for choosing k and deciding which A(Si, k) to

call the machine Ai . Suppose one is given an upper bound n on the

number of states required of M where L0 = L(M) . Consider the

following algorithm:

Algorithm 4.1. At each i , compute Bi = A(Sil 2 n-l n-2) . if

Si L(Bi) then Ai = Bi, otherwise Ai = A(Sin-2) .

Theorem 4.1. Algorithm 4.1 has the following properties:

a) Si S L(Ai) .

b) If S contains a special set, L0 c L(Ai)

c) If Loj2n-lC Si for some j then for all i >j

L0 = L(Ai)

21

Proof. Part a) follows directly from Theorem 2.1, part b) from

the discussion following Theorem 3.3, part c) from Corollary 3.2.

If one assumes, as seems reasonable, that every string in LO

will occur as some yi , Algorithm 4.1 will eventually choose only a

machine which generates exactly Lo . This is known in the literature

as the algorithm identifying L . There is a problem in that Algorithm 4.1

depended on an a priori estimate of n , the size of a machine for LO

It is shown in [31 that without this estimate, no algorithm will be

able to identify the finite-state languages from an arbitrary presentation

of L0 . If, however, the presentation includes the information about

which strings art. not in LO or meets certain regularity conditions,

there are algorithms like 4.1 which will identify the finite-state

languages.

Although there is a close relation between the problem discussed

here and the grammatical inference problem [2, 3], the criteria for

the best solution to the problem are quite different and this leads

to a number of other differences in the two studies.

5. Another Finite-State Acceptor

Another machine B(Sk) which accepts S at look-ahead level k

will be introduced here and discussed. The properties of B(Sk) are

not as easily characterized or as nice as those of A(Sk) , but it does

handle certain problems better than A(Sk) and so will be briefly

discussed here.

22

Definition 5.1. Assume that ze , zyeS for some yE ,

S c , and k is a nonnegative integer. m(z,S,k) will be defined

as the set of strings wEZ with the properties

(I) zwxES for some xEE -[A]

(2) length (w) = k

Definition 5.2. e(zS,k) = m(z,,Sk) U) g(z,S,k) • # where

'wl, w2,...,w! .y is defined to be tw.,yw 2y,...,wiy].)

e(z,S,k) is undefined if z and k are outside of the domains

specified in the definition of g(z,Sk)

Definition 5.3. If S is a finite set of strings from E

let B(Sk) be the finite nondeterministic automaton

B(Sk) = , Z,f,Q, F>

where
#

" e U 2 there is a z with zwES and q = e(z,S,k))

Z = a finite nonempty set of input symbols

f(qa) = fq'eQ I there is a zcE* such that

e(z,S,k) = q and e(zaS,k) = q')

QO= e(ASk)]

F = qeQ j#Eq)

The proofs of the following theorems are nearly identical to their

respective counterparts of Sections 2 and 3 and will not be repeated here.

23

25

Theorem 5.1 S C L(B(Sk)) for all nonnegative '-.

Theorem 5.2. L(B(Sk)) = S if k is greater than or equal

to the length of the longest string in S

Theorem 5.3. L(B(Sgk4)) _ L(B(S,k))

There is no immediate analogy to Theorem 3.3 for B(Sk)

Since the states of B(S, k) contain more information than those

of A(S,k) , it is not surprising to find the following true:

Theorem 5.4. L(B(Sk)) S L(A(S,k))

Proof. w = aa2 ...aj eL(B(S,k)) , ai , implies the existence

of states qo, qlq 2, ... ,q in B(S,k) with the properties (1), (2),

and (3) of Definition 2.2. This implies the existence of states

6,qljq,....,q in A(S,k) which also satisfy (1), (2), and (3).

Let qi = (wlw# Eqi) for i = 0,1,2,...,j . Therefore qi+lef(qi'ai+l)

in B(Sk) implies there is a zZ* such that e(zS,k) = qi and

e(zai+lS'k) = qi+l * From the definition of e , this implies that

g(z,S,k) and g(zai+l,S,k) exist as states in A(S,k) , and we have

just named these states qI and qi~l , respectively. This leads to

qj+l ef(qpai+l) in A(S,k) which proves (2) of Definition 2.2 for

the states qx,.L. .,q • (1) and (3) are easy to check and so it

follows that w tL(A(S,k))

24

Thus B(S,k) accepts S and it accepts fewer "extra" strings

than A(S,k) . This effect is ex3treme in certain problems and may be

considered quite an advantage. However, it has not been shown that

there is any subset S of a language which will yield the language

using B(Sk) as was shown for A(S,k) , so the earlier machine may

be preferred.

6. Discussion and Sumary

This -aper gives two algorithms for constructing acceptors fron

finite sets of strings. Both algorithms have been programmed on a

casputer and extensively tested. Typical constructions of machines

with ten or twenty states tahe a few seconds or less to complete.

Many other versions of these algorithms are possible, and some were

investigated although they are not described here.

The authors are not aware of a comparable solution to this problem

elsewhere in the literature. The algorithm has a simple operation, and

is therefore easy to program and fast in execution. The parameter k

enables the user to obtain as exact a fit to the neerled behavior as he

desires at the cost of increasing the complexity of the resulting acceptor.

The simplicity of the algorithm makes its operation easy to understand

and easy to characterize. Finally, the system has the distinct advantage

that if a large amount of computational effort is invested in finding an

acceptor for a set of strings, changes can be made in its behavior without

the necessity of starting the design procedure over again. If A(Sk) is

created to accept S and then S is changed slightly, only the states and

transitions in A(S,k) which correspond to the changes in S need to be

adjusted to obtain a new acceptor.

25

$

A more detailed proof of Theoren 3.3 will be included here.

Definition A!. If pi is a state in M with the property that
i

d(pi,V)/D for all wE{ , then Pi will be called an absorbing state.

Lera Al. L(A(Sk)) = L if and only if for each state pimP

of M there is a set xi, l,xi,...,x J] of distinct sets x

of states qeQ of A(Sk) such that

(1) d(p0 , w) = pi if and only if f(qow) = xi 1 , .. o,xi, hi

where weE , [q] = Q unless pi is an absorbing state.

d(p, w) = absorbing state if and only if f(qo,w) =4p

(2) If PieD then xi F 4p for j z 1,2,...,ji ,

(3) If Pi/d then xi, j n F =P for J =:1.2...,,Ji •

Proof. Assume that the three conditions hold and observe why

it follows that L(A(S,k)) = L0 . Construct the deterministic automaton

N =<X,E,e,xI,E> which has the same behavior as A(S,k) . [6]

Xc2Q

e(xa) = x' if x' = U f(qa)
qEx

Xo = QO

E = fxjx n F- q)

26

The three conditions pentition the states of N into sets Y of

states wnich are equivalent to pi in M o They require by (1) that N

be in a state of Yi ifandonlyif M i n pi andby (2) and (3)

that N is in a final state if and only if M is in one. So M and N

are equivalent by conditions (1), (2), and (3), and N and A are

equivalent by construction. Therefore, L(A) = L(M) = LO "

If L(A(Sk)) = L , then N can be defined as above and the

sets Yi = fxcXl x is equivalent to pieP] can be constructed. Certainly

d(poY) = p1 if and only if e(xo,v) -- x for one of the xEY i since N

must go into a state which is equivalent to pi . So property (1) holds.

Pied implies xFE which means x n Fl q. So property (2) holds and

property (3) holds similarlu.

Proof of Theoren 3.3. We construct A(S,k) and show that it

satisfies the conditions of Lemma Al. Corresponding to state p i'P

of M we construct the sets xi, j 1 < j < J, ' which each have the

state g(ufjL,k) where d(po,uf) = p, and u~v1 = z, is one of the

strings designated in (1). (If pi is an absorbing state then construct

onlythe set xi, 1 = [] .) Each of the sets xj j 1 < j < J, x also

will contain either none or some of the states g(uf,Lo, k-h) for

I < h < k where a set xjj is constructed if there is a yc such
that f(qo,y) = xi. j . The set x j will contain nothing else.

Certainly this construction can be done since by the construction of S

there must be a g(u 1 ,Lo,k) as defined for each piEP . Furthermore,

this construction partitions all of the sets of states in A(S,k) since

27

no states can exist which are not of the form g(u 1, IO, k-h) for

0 <h <k - This can be chetkedby studyng the construction of S.

It will be necessary to use the following property which can be

easily proved;

Prp~yA If d(p0,y1) = d(p0 ,..,) . then

g(y1,I ,k) = g(y.,i~k)

Condition (1) of Lemma 3.2 will be proved by induction on the

length of v

I. If length (w) = 0 then d(po,w) = po and f(qoW) = qo) =

fg(ALok)3 e [xO,l,...,XO, o

I. Assume length(w) = h , length(wa) = h+l , and condition (1)

holds for length(w) = h . d(poWa) = pi if and only if there is

a pj such that d(pow) =pj and d(pj,a) = pi . This is true if and

only if f(qow) E [xj.l, Xj,2"..xj,j and d(p ja) = pi by the

induction hypothesis. It remains to be shown that the last stated

conditions hold if and only if f(q ,wa) c FXi, 1,xi, 2 , ... ,xi, J

That this is true can be seen by examining the states of

x E X J3lJYJ) and observing what happens as the input symbol a is

applied. First of all we know that g(u,Lok) Ex where d(po,u) = Pj

by the construction of x . Since the set S1 = u g(u, Lo,kl) is a

subset of S and S2 =u u. g(ua,I ,k) is a subset of S because

S2 C S1 , we have g(ua,Ijk) e f(g(u, Ibk),a) by definition of f

(One case which deserves special comment is when g(ua,L0 ,k) = 9 .

This is dealt with in the next paragraph-) But d(poua) = Pt so the

newly found state g(uajIk) is exactly the state which was incorporated

into all of x!,x4, .. .,x, Ji This assertion uses Property A and the

fact that g(u',1 ,k) was included in every set xx42 ... ,xi i

where d(pou') = pi " Similarly the states obtained by computing

f(q1a) for all other q in x can be examined and shown to be of the

form g(u',Ib,k-r-l) if q = g(u.Ib,k-r) . It is left to the reader

to fill in the remaining details and thus verify that

f (qo,a) C V 0xx , 0 ,xi, ji}) .I

Referring to the previous paragraph, if g(ua, Lok) = q then one

of the two cases will follow:

Case I g(uaI1,k4l) j p If g(uaL 0 ,k) and uawjS for

any wei* , then g(ua, S,k) will be undefined and the proof will fail
at this point. This is why it is necessary to have the term a included

U

in the construction of S • If g(uaLk) = and g(uaLok+l) p

then au = I and u .g(uILk+2) C S . Then ua g(uaLo, k+l) is a

subset- of S and is not empty. Therefore there will be a w such that

uaw e S so that g(ua,S,k) will be defined and the proof will go through.

29

Case II. g(ua, bgkil) = 9 . This occurs if p, is an absorbing

state. This is true if and only if g(ua,Ik) is not defined which

happens if and on y if f(g(uILok),a) is empty. So (1) of the Lema

follows in this case as well.

Conditions (2) and (3) of the Lama are clearly true. If piD

then A e g(u,Lo, k) where d(po,u) = p, . Then g(u, Io, k) e F so that

xi,j n F#AP forall J =, 2 3,...,Ai. If pliD then

A/g(uyIbb) for any nonnegstive integer b so that x, j n F=

for all j = 1,2,j,..."J " This completes the proof of the Theorem.

i.30

! -
z5

3oI

- I

BIBLIOGRAPJY

[1] J. A. Brzozovark, "Derivatives of Regular Expressions," Jouinal
of the Asuociaticn for Ceimtig Machinr, Vol. 11, No.3b,pp. W1-9 , 3196.-

(21 J. A. Feldan2 "Firat Thoughts on Grammatical Inference,"
Stanford A. I. Memo No. 55, August 1967.

[3] J. A. Feldaa, J. Gips, J. J. Horning S. Reder, "Gramatical
Cauplexity and Inference," Technical Report No. CS125, Ccuputer
Science Department, Stanford University, June 1969.

[4 A. Gill, Introduction to the Theory of Finite-State Machinesv
McGraw-Hill Book Canaqny, Inc. , New York 1962.

[5] S. Ginsburg, "Synthesis of Minial-State Machines," IRE Transactions
on Electronic Caaters, Ec8, pp. 441-49.9, 1959.

[6] S. Ginsburg, An Introduction to Mathematicai Machine Theoa.
Addison-Wesley Publishing Company, Inc., Reading Massachusetts, 1962.

[7] S. Ginsburg, The Mathematical Theory of Context-Free Languages.
McGra-Hill Book Ccapwy, Inc., New York, 1966.

(8] M. A. Harrison, Introduction to Switching and Automata Theory,
McGraw-Hill Book Ccoxpay, Inc., New York, 1965.

[91 D. A. ,uffman, "The Synthesis of Sequential Switching Circuits,"
Jowrnal of Franklin Institute, Vol. 257, No. 3, pp. 161-190,
195; No. 4, pp. 275-50, 1954.

[10] G. H. Mealy, "A Method for Synthesizing Sequential Circuits,"
Bell Eysten Technical Journal, Vol. 34., No. 5, PP. 1045-1079, 1955.

(11] G. Ott and N. Petnstein, "Design of Sequential Machines from Their
Regular Expressions," Journal of the Association for Computing
Mcie Vol. 8, No. 4, pp. 585-60, 1961.

[12] J. Reynolds, "Grammatical Covering," TM-96, Argonne National Lab.,
June 1968.

31

avUei4y Classifkiain

D=KHMET CONTROL DATA. - & D
(11.mig,' ctfi..eseI., of Mft, be* of001 a "~. 10OM wd..b118 inuUuaMuef 64 VMOOM

4 Wh~en O w el r* I 0100~eDd)
I- ORSOOMA TINO ACTIVITYV (C P00000 00".) a. K@1 EUI1-' 7~IIAtI

Stanford Artificial Intefligence Project Unc 89-
Computer Sciaoce Department 116. allows
Stanford Univeruity

On The Synthesis of Finite-State Acceptors

4. DESCRIPTIVE NOTES ("Of eIVORu ad 1100IuMtu A1Wea)

a. AV ?"O~ill (Firt ise,mi 1430 Mol .a sis)

Alan W. Biermann and Jerome A. Feldman

1. 11P01011 DACU 7. TOYAt. NO, OP PA6E 11NO09SP

Arl19031 77 12
to, CmfoAC-0-W-0ANT O. 0. oRg*INATOWS REPORT wNMMUNIII

ARPA SD-183 AIM-114
6. PROJECT NO.

06t S.jHER RPORT 000180 (AWi O 1 11110 IRSb. Al 04W;;7

10, OISTRODIVIOM SYTATEMENY

Statement No. 1I Distribution of this document is unlimited.

I I. OUPPLRMEM"TARY NOTES is, oSfPfl4RN OLITAflY ACTIVITY

1"11ASTIIACT

Two algorithms are presented for solving following problem: Given a finite-
set S of strings of symbols, find a finitelate machine which will accept the
strings of 5 and possibly some additional strings which "resemble" those o~f S.
The appr~oach used is to directly construct the states and transitions of the
acceptor machine from the string information, The algorithms include a.
parameter which enable one to increase the exactness of the resulting machine's
behavior as much as desired by increasing the number of states in the machine.
The properties of the algorithms are presented and illustrated with a number
of examples.

The paper gives a method for identifying a finite-state language from a
randomly chosen finite subset of the language if the subset is large enough
and if a bound is known on the number of states required to recognize the -. t
language. Finally, we-dioveiss some of the uses of the algorithms and their
relationship to the problem of gramatical inference,

r oVwn,.e aeicg.

